线性代数 示例

表示为向量等式 x+y+z=2 , 4x+5y+z=12 , 2x=-4
x+y+z=2 , 4x+5y+z=12 , 2x=-4
解题步骤 1
以矩阵形式书写方程组。
[111245112200-4]
解题步骤 2
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
点击获取更多步骤...
解题步骤 2.1.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
[11124-415-411-4112-42200-4]
解题步骤 2.1.2
化简 R2
[111201-34200-4]
[111201-34200-4]
解题步骤 2.2
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
点击获取更多步骤...
解题步骤 2.2.1
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
[111201-342-210-210-21-4-22]
解题步骤 2.2.2
化简 R3
[111201-340-2-2-8]
[111201-340-2-2-8]
解题步骤 2.3
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
点击获取更多步骤...
解题步骤 2.3.1
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
[111201-340+20-2+21-2+2-3-8+24]
解题步骤 2.3.2
化简 R3
[111201-3400-80]
[111201-3400-80]
解题步骤 2.4
Multiply each element of R3 by -18 to make the entry at 3,3 a 1.
点击获取更多步骤...
解题步骤 2.4.1
Multiply each element of R3 by -18 to make the entry at 3,3 a 1.
[111201-34-180-180-18-8-180]
解题步骤 2.4.2
化简 R3
[111201-340010]
[111201-340010]
解题步骤 2.5
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
点击获取更多步骤...
解题步骤 2.5.1
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
[11120+301+30-3+314+300010]
解题步骤 2.5.2
化简 R2
[111201040010]
[111201040010]
解题步骤 2.6
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
点击获取更多步骤...
解题步骤 2.6.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-01-01-12-001040010]
解题步骤 2.6.2
化简 R1
[110201040010]
[110201040010]
解题步骤 2.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
点击获取更多步骤...
解题步骤 2.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-02-401040010]
解题步骤 2.7.2
化简 R1
[100-201040010]
[100-201040010]
[100-201040010]
解题步骤 3
使用结果矩阵定义方程组的最终解。
x=-2
y=4
z=0
解题步骤 4
解为使方程组成立的有序对集合。
(-2,4,0)
解题步骤 5
通过重新安排增广矩阵的行简化式中的每一个方程对解向量进行分解,而简化式是通过求解每一行中的因变量得出。
X=[xyz]=[-240]
Enter a problem...
 [x2  12  π  xdx ]